
WHITE PAPER

synopsys.com

Overview
The automotive industry is going through a revolution. To adapt to new customer demands
such as convenience, safety, autonomy, and electrification, the automotive industry is moving
to software-defined vehicles. These require new, more powerful electrical/electronic (E/E)
architectures and significantly increase the vehicle software content. They also force the
industry to move from lengthy development cycles and complex maintenance schedules
to a more agile development approach allowing for continuous over-the-air (OTA) updates over
the vehicle lifespans.

This white paper addresses one of the key changes: the move from software development and
validation using physical electronic control units (ECUs) and benches to digital twins using
simulation of ECUs, called virtual ECUs (vECUs). vECUs bring important benefits such as front-
loading of the validation effort, greater testing scalability, and better ecosystem collaboration.
This paper includes a comprehensive definition of the various vECU types, their abstraction
levels, and their applicability during software development and validation.

Automotive Industry Challenges
Delivering to the expectation of consumers while achieving the expected return on investment
is a key objective of the automotive industry transition to software-defined vehicles. This
transition is challenged by several factors, including the electronic supply chain disruption, the
overhaul of E/E architectures for software-defined vehicles, the complex software development
and deployment, increasing safety and security challenges, and accelerating time to market
to compete. Each of these items has a direct impact on the electronic systems (hardware and
software) development.

The supply chain disruption ranges from chip shortages compressing the supply chain to
new entrants addressing computing requirements with new system-on-chip (SoC) designs.
This requires software development to be decoupled from hardware development such that
these two development tracks can proceed in parallel. Digital twins for electronics system
development enable this decoupling.

The overall E/E architectures for software-defined vehicles are driving the need for new
compute platforms that are more powerful, more power conscious, and more scalable. Moving
from domain controller to zonal controller and central compute is directly impacted. This also
requires new vehicle operating systems that need to be developed earlier. Digital twins enable
development to start sooner.

Authors
Filip Thoen
Ph.D., Synopsys Scientist—
Virtual Prototyping Product
Architect

Kevin Smart
Virtual Prototyping
Strategy Architect

Nicolas Amringer
Virtual Vehicle Product
Architect

Accelerating Development of Software-
Defined Vehicles with Virtual ECUs

2

Millions of lines of code ensure that the vehicle operates correctly. Electrification, advanced driver assistance systems (ADAS), and
in-vehicle infotainment (IVI) require more software that operates interdependently to serve the desired function. The validation of
these systems cannot happen in isolation, late in the development process and using expensive test benches and mule vehicles.
Most of the functional problems need to be addressed earlier and in a more productive environment. Digital twins provide a highly
productive validation environment for such tasks.

In addition to functionality, safety and security are key concerns for automotive companies. New vulnerabilities need to be accounted
for, and compliance with safety standards such as ISO 26262 creates additional pressure on already compressed development
cycles. Transitioning to digital twins for electronic system development enables developers to take into account these aspects earlier
than before and to accelerate time to compliance.

New entrants are challenging traditional development, creating increased competitive pressure and the need to accelerate time
to market. Achieving start of production (SOP) with accelerated development is not sufficient anymore; the ability to continuously
validate and deliver software updates and new functionality via OTA updates has become a key differentiator and business
opportunity. Automotive companies need to ensure that these update cycles are fast. Digital twins accelerate the validation of
OTA updates through faster turnaround. Collaboration across the new automotive ecosystem is now, more than ever, key to future
success. Digital twins provide an essential collaboration platform to foster innovation, accelerate development, and deliver better
products faster.

Digital Twins for Electronic Systems Development Are the Key to Success
The introduction of digital twins and use of virtualization-based testing with vECUs is a key element to address the challenges
associated with ECU development. As shown in Figure 1, there is a clear trend in the industry to transition from traditional physical
bench testing to virtualization-based testing. This has several major benefits:

• Early software bring-up before physical ECUs or benches are available

• More productive system testing, due to deterministic reproduction of issues and a high degree of debug visibility

• Support for the rapid pace of agile development and integration into continuous integration/continuous deployment
(CI/CD) systems

• Functional safety and security validation, by using advanced features such as fault injection difficult to realize with
physical systems

• Easy supply chain collaboration due to the software nature of vECUs

Virtualization-
Based Testing

Electronics Hardware
and Software

Physical Systems
and Environment

 Physical
Testing

Figure 1: Change in automotive electronics development

3

One of the reasons that early software development is so critical is the amount and complexity of code that must be written and
validated. Automotive software stacks are growing due to several trends. At the vehicle level, a new zonal architecture is being
introduced, with complex hardware based on advanced SoCs and centralized high-performance computing (HPC) platforms. At the
same time, there is a move towards a more service-oriented software architecture, with easy discovery and updateability, and less
monolithic applications.

Traditionally, the software running on ECUs has followed the Automotive Open System Architecture (AUTOSAR) Classic standard.
Recently, operating systems such as Linux and QNX® compliant with the Portable Operating System Interface (POSIX) standards
have become increasingly popular. A mix of non-POSIX and POSIX software is now commonplace at the vehicle level, within a single
ECU, and even running on a single microcontroller unit (MCU) or SoC.

Figure 2 shows an example of such a converged software architecture, in which ECU consolidation causes multiple mixed-criticality
software stacks to share the same ECU or MCU hardware. The example shows a combination of POSIX and non-POSIX (AUTOSAR
Classic in this case) stacks, for instance for in-vehicle infotainment (IVI) and advanced driver assistance systems (ADAS) function.
This multiplexing is typically enabled through use of a hypervisor. These stacks might have quite different safety levels, presenting the
additional challenge of developing and validating software with mixed criticality.

Apps

Device

CPU

POSIX AUTOSAR Classic

Device Device Device

Hypervisor

Hardware (Target)

Middleware
(ARA, ROS,…)

OS & Drivers
(Linux, QNX®,…)

SWCs

RTE

AUTOSAR OS,
BSW, MCAL

Figure 2: Converged ECU/MCU software architecture

Device

CPU

POSIX AUTOSAR Classic

Device Device Device

Operating System and Drivers

Hardware (Target)

Middleware

Applications

Figure 3: Levels of automotive software stacks

Another emerging trend related to POSIX is the use of the Virtual I/O (VIRTIO) device open interface promoted by the OASIS
standards consortium. Though originally originating from the HPC market, VIRTIO-compliant device drivers are making their
appearance in automotive software stacks, making it easier to move the software stack between different hardware and reuse
software stacks.

4

vECU Classification: Types
The simulation of ECUs as vECUs has found rapid adoption in several phases of automotive development. However, a comprehensive
definition of the various vECU types, their abstraction levels, and their applicability has been missing in the industry. Existing vECU
classifications focus on AUTOSAR Classic and use its terminology of Software Components (SWC), Basic Software (BSW), and
Microcontroller Abstraction Layer (MCAL).

As POSIX operating systems have made their way into vehicles, a more generic vECU terminology is needed. Synopsys recommends
the terms Applications, Middleware, Operating System (OS) and Drivers as shown in Figure 3. For simplicity, the hypervisor
is considered part of the OS. We map AUTOSAR Classic to this terminology as follows: Applications=SWC, Middleware=RTE,
OS=AUTOSAR OS + BSW, Drivers=MCAL.

Broadly speaking, there are two distinct types of vECUs: host compiled and target compiled.

In a host compiled vECU, the ECU software is cross compiled to the simulation host (typically an Intel x86 server or desktop, however
Arm servers are increasingly common). For example, if the host is an x86-based machine then the x86 compiler is used rather than
the compiler for the MCU that will run the software in the physical ECU. A target compiled vECU uses the compiler for the specific
target automotive MCU or SoC, containing CPUs such as Arm, RH850, or TriCore.

The host compiled vECU contains no model of the ECU hardware. Instead, Application Programming Interfaces (APIs) are simulated
at various cut points in the software stack, to remove lower, hardware dependent software layers. Thus, the vECU is not running full
production code and software modification is required for certain layers. Each modification is a focused replacement of a specific
software layer not part of the system under test (or SUT) with a simulation equivalent.

In contrast, a target compiled vECU uses detailed hardware simulation models to represent the ECU hardware. This allows the
production software to be run with no modifications. The software is compiled exactly as it would be for the physical ECU in the
actual vehicle. This requires detailed hardware modeling of the complete ECU, its SoCs and/or MCUs, and their internal CPU cores,
components, and even board-level devices. With Arm hosts now readily available and the Arm architecture being increasingly adopted
as automotive ISA architecture, host and target are closing in on parity and new opportunities open up for vECU virtualization.

There is a clear trade-off: host compiled is faster but less accurate, while target compiled is slower but more accurate. These
characteristics dictate their primary use. Host compiled is best for tackling the higher software layers and target compiled is best
applied for hardware dependent software and full-stack validation of all software layers together. Figure 4 shows both types of vECUs
and introduces the abstraction levels they support. The color-coding highlights production software, simulation replacement, or
bypassing of a software layer.

Algorithm Model

Level 0

Model or
Generated /

Handwritten Code

Application
Integration

Level 1

Production
Applications

Middleware
Integration

Level 2

Production
Applications with

Production
Middleware

Operating System
Integration

Level 3

Production
Applications

& Middleware
with Production

Operating System

Partial Binary
Driver Integration

Level 4a

Partial Production
Stack. Specific
Code Bypassed

to Host

Full Binary Stack
Integration

Level 4b

Complete
Production Stack

Physical ECU

Complete
Production Stack

Host Compiled /
Interpreted Host Compiled Target Compiled

Production Simulated Bypassed

Algorithms Applications

Middleware

Applications

Middleware

OS

Applications

Middleware

OS

Drivers

Target HW

Applications

Middleware

OS

Drivers

HW

Applications

Middleware

OS

Drivers

Abstract HW

Applications

Middleware

OS

Drivers

Partial Target
HW

Hardware
Validation

Figure 4: vECU types and abstraction levels

5

vECU Classification: Abstractions
Level 0—In Figure 4, Level 0 focuses on the design of the algorithm, for instance perception, fusion, planning, control, etc..
Programmers can either use model-based design, for example with the MathWorks® MATLAB environment, or handwrite C/C++
code or even machine learning models for ADAS or Autonomous Drive (AD) applications. The code is simulated on the host as host
compiled code or via an interpreter. This falls outside of the scope for this paper, as does the physical ECU (right side of Figure 4),
which logically requires target compiled code.

In the host-compiled vECUs, Level 1 to Level 3 is a logical progression of adding more and more production code at lower software
layers. In Figure 4, the green represents production software and purple represents simulation substitution. In the target-compiled
vECUs, Level 4a and Level 4b run the actual target binaries, enabled through detailed hardware models. Level 4a differs from Level 4b
in that certain software drivers or complete layers (light blue) are bypassed on the target and executed as host functions rather than
using a detailed hardware model.

Level 1—This level is for Application Integration, with the testing focus on the production application. The middleware software
layer is removed, and then supplemented with basic run-time and I/O simulation code, allowing the application to be scheduled
and to perform I/O communication. For example, in the case of AUTOSAR Classic, this simulation code consists of the Run-Time
Environment (RTE), AUTOSAR OS, and I/O code to send and receive signals.

The application or module is compiled into a host executable. The communication of the code and its compiled vECU is typically
at the signal level, as opposed to the bus or network level (i.e., frame level). This type of vECU enables early module testing without
target availability, and this type of vECU simulation can be easily integrated into a CI/CD flow.

Level 2—A Level 2 vECU uses Production Middleware to expand the scope to a complete application integrated with production
middleware. The OS is replaced by a simulation equivalent as indicated by the purple color in Figure 4. Again, the application is
typically compiled into a host executable together with the Production Middleware and Simulation OS.

The communication of the vECU can be optionally modeled at the signal level or at the bus/network level using frames. Level 2
enables a broader validation scope, including not only the functional basics of the application, but also extended functionalities such
as bus monitoring and diagnostics. It also enables validating networks of ECUs, including the complex definition and configuration
settings of these networks. Integration within CI/CD flows is possible at this level too.

Level 3—This level adds even more production software to the bottom of the stack: A production OS is included, and the device
drivers are substituted with a simulation equivalent. Typically, the vECU interfacing is modeled at the bus/network level by Abstract
HW. In Level 3, only the hardware dependent parts of the ECU software (such as the driver layer) are missing but all the hardware
independent software layers can be validated. Again, integration with CI/CD is possible.

For target compiled vECUs, Level 4b is the classic Full Binary case. In Figure 4, all boxes in this level are green, meaning that
production code is used for all the software layers: Application, Middleware, and OS. No simulation substitutions are required.
The software stack is compiled with the same compiler as the physical ECU and produces the identical binary target executable.

This binary compatibility is enabled through a complete set of hardware models covering all the internals of the ECU, including
MCUs, DRAM, timers, and network controllers (e.g., CAN or Ethernet). Communication modeling is typically done at the hardware
bus/network level.

Level 4b—This level enables the widest use cases, all the way from application and middleware to OS and drivers, and even the
hypervisor. Users can validate complex system boot scenarios, which typically involve certification validation, and actions such
as ECU re-flashing, for instance as part of an OTA update. This level’s completeness allows to it perform functional safety testing,
for example by injecting hardware faults in simulation, as well as security testing. CI/CD can be used to continuously test
the full stack.

Level 4a—This level is a unique approach introduced by Synopsys. Its principles are the same as Level 4b, with the difference that
certain software functions in the full stack can be bypassed. They are executed as host functions rather than the normal combination
of a target software layer and its underlying hardware models. Two technologies can be used for the bypass step: Host Extension and
VIRTIO driver substitution.

6

Host Extension, a CPU instruction set simulator (ISS) technology, intercepts API calls to the software function or layer to be bypassed,
passes control to the host function, and patches results back into the target software stack. The other technique, VIRTIO driver
substitution, leverages the increasing adoption of this standard in automotive software. If the stack already supports VIRTIO, it is
straightforward to change the hardware driver to a simulation driver.

Level 4a offers two important advantages over Level 4b. The set of required hardware models is reduced, enabling full stack
validation earlier while models are being readied or eliminating the need to model everything. This level also speeds up the vECU
simulation by the use of faster host functions. Leveraging a compute intensive host GPU rather than a slow GPU hardware simulation
model is a common example.

Level 4a can progress towards Level 4b by incrementally adding target hardware models as they become available. Level 4b is
reached when all hardware that the software stack accesses is modeled. This could be a subset of the full device if software does not
use certain features.

Mixed Abstraction Levels—vECU levels are not required to be identical throughout a domain/zone or vehicle level simulation.
Figure 5 illustrates mixing vECU levels in a single simulation. Note there is a sliding scale between Level 2 and Level 3. In the same
software stack, some of the Operating System might be implemented as Level 2 (simulation code) while others might be at Level 3
(production code). It is also possible to include Level 4a in the mix so that some lower levels of software can be executed.

Application
Integration

Level 1

Production
Application

Middleware
Integration

Level 2

L2

Mixed-Abstraction Vehicle Level Simulation

Production
Applications with

Production
Middleware

Operating System
Integration

Level 3

Production
Applications &

Middleware with
Production

Operating System

Partial Binary
Driver Integration

Level 4a

Partial Production
Stack. Specific
Code Bypassed

to Host

Full Binary Stack
Integration

Level 4b

Complete
Production �Stack

Host Compiled Target Compiled

L3 L4a

Applications

Middleware

Applications

Middleware

OS

Applications

Middleware

OS

Applications

Middleware

OS

Drivers

Abstract HW

Applications

Middleware

OS

Drivers

Abstract HW

Applications

Middleware

OS

Drivers

Partial Target
HW

Applications

Middleware

OS

Drivers

Partial Target
HW

Applications

Middleware

OS

Drivers

Target HW

Figure 5: Mixed-abstraction vehicle level simulation

7

vECU Classification: Comparison
As previously discussed, each of the vECU levels has its own advantages. Some levels may be more appropriate and useful than
others at specific stages of an ECU development project. Figure 6 contrasts and compares the different levels. The left side plots
the number of test cases, representing the validation scope, against the degree to which the vECU models the actual ECU hardware.
Of course, other aspects including vECU (modeling) effort and resulting simulation speed should be considered on
a multi-dimensional plot.

The graph shows how the higher levels are more realistic and support more test cases. However, the effort involved and the
simulation speed are inversely proportional. The grey areas on the left side between Level 2 and Level 3, and between Level 4a and
Level 4b, reflect the reducing scale of applying Operating System substitution and host bypassing.

Te
st

 C
ov

er
ag

e

Realism

Validation Scope vs. Accuracy Software Breakdown for each vECU Level

Speed

Effort

L0

L1

L2

L3

L4a

L4b

Phys
ECU

Production

Simulation

Bypassed

Level DriversApps

L0
Algorithm Model

Model /
Handwritten

Prod

Prod Prod Sim Sim

Sim

Sim

Prod

Bin

Bin

Prod Prod

Bin

Bin

Bin Bin

Bin Bin

Middleware OS

L1 - Application
Integration

L2 - Middleware
Integration

L4a
Partial Binary

L4b
Full Binary

L3 - Operating
System Integration

Figure 6: vECU levels comparison

The right side of Figure 6 summarizes how the different levels support the four main software layers of Applications, Middleware, OS
and drivers. The downwards staircase function shows the growing inclusion of more production software between Level 1 to 4. The
columns show how the layers move from substituted simulation layer to production software to binary code.

Synopsys vECU Solutions
As part of providing the industry’s broadest and most robust automotive solution, Synopsys fully supports the complete range of
vECU levels discussed in this white paper. Figure 7 shows the scope of vECUs supported by Synopsys. This solution offers rich
integration with the rest of the automotive ecosystem, by providing OS and semiconductor models, and integrating with environment,
sensor, and vehicle dynamics simulators, test automation tools, and many more.

Pub: Feb 202402/19/24.SNPS1290843667-vECU-WP.

©2024 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is
available at http://www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.

Algorithm Model
Level 0

Application
Integration

Level 1
Middleware
Integration

Level 2
Operating System

Integration

Level 3
Partial Binary

Level 4a
Full Binary
Level 4b Physical �ECU

Software-in-the-Loop (SIL)
– Host Compiled

Virtual HW & Virtual
HIL—Target Compiled

Broadest Most Productive
vECU Support

 Broadest Semiconductor
Model Library

Synopsys Automotive Digital Twin—Virtual ECUs, Simulation, and Ecosystem Integration Models,
Vehicle Dynamics, Environment and Sensors, Software Analysis Tools, Test Automation, and CI/CD

Model-in-the-Loop
(MIL)

Hardware-in-
the-Loop (HIL)

Algorithms Applications

Middleware

Applications

Middleware

OS

Applications

Middleware

OS

Drivers

Abstract HW

Applications

Middleware

OS

Drivers

Partial Target
HW

Applications

Middleware

OS

Drivers

Target HW

Applications

Middleware

OS

Drivers

HW

Software-in-the-Loop (SIL)—Host Compiled

Figure 7: Broadest digital twin/vECU solution for automotive companies

Conclusion
There are many new challenges associated with the development and validation of automotive electronics, and of ECU software
in particular. The old method of developing software and validating the system solely in physical bench setups is obsolete. The
introduction and use of virtualization-based development and testing with the presented full range of vECU levels is a new approach
gaining rapid adoption.

This white paper has introduced a comprehensive vECU classification that covers both POSIX and non-POSIX software stacks. This
includes a new type of vECU, Level 4a, which is target compiled level but allows selective bypass of specific target software functions
or layers, executing them as host functions instead. This level offers opportunities for vECU simulations difficult to achieve otherwise.

There is no single vECU level that addresses all the challenges. Synopsys supports all the levels in a single framework. This allows
users to tune the abstraction levels to their use cases, mix vECU levels in a single simulation, and scale up to complete vehicle level
simulations. There is no better way to develop functionally correct, robust, safe, and secure automotive software.

